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ABSTRACT
The use of arbitrary spaces to represent the velocities and pressures
in the Navier-Stokes equations typically leads to unstable finite element
approximations. We show in this paper that if spaces of piecewise poly-
nomial functions are used and if the grid for the velocity field is suffi-
ciently fine compared to the grid for the pressure, then the resulting

finite element approximations are stable and converge at the optimal rates.
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1. Introduction

This paper is concerned with the identification of finite element
spaces which yield stable and convergent approximations to the Navier-
Stokes equations. It has been known for several years that the selection
of arbitrary finite element spaces will typically lead to instabilities
in the pressure ([2], [5], [6], [8]). Only special choices will work. This
is analogous to the situation that exists with finite difference approxima-
tions, where only specially constructured schemes will be stable.

Previous work has identified a number of special spaces which yield
stable approximations. For example, in the planar case it has been shown
[6] that if the space of velocities consist of continuous piecewise qua-
dratic function and piecewise constant representations are used for the
pressure, then the resulting finite element scheme is stable. A similar
result holds if the space of velocities consist of continuous piecewise
linear functions augmented by suitable trilinear functions. These results
do require that the grid be regular and satisfy an angle condition, but
there are no other restrictions on the shape of the elements. On the other
hand, for specially shaped elements such as the crisscross pattern the
smaller space consisting only of continuous piecewise linear functions is
stable [3].

The work contained in this paper is an extension of first type of ele-
ment cited above in the sense that there are no restrictions on the shape
of the elements. In particular, we show that the finite element scheme is
stable provided that the dimension of the space of velocities is sufficiently
large compared to the dimension of the space of pressures. This can readily
be translated into a mesh ratio condition which is familiar from previous
work on hybrid finite methods [4].

In this last section we show that similar results also apply to the Pois-

son equation when written as a first order system.



2. The Brezzi Condition

Let 2 be a bounded region in R"(n=2 or 3). We consider an in-
compressible flow in  where u denotes the velocity, p the pressure,
f the body forces, and Vv and the viscosity. We shall be interested in

~

the nonlinear case where the equations of motions take the form

(2.1) ' -vAu + (u-grad)u + gradp = f in Q ,
(2.2) divu =0 in ,
(2.3) u =0 on 32 .

It is known that (2.1) - (2.3) has a unique solution provided the generalized
Reynolds number [6] is sufficiently small. We shall assume this without
further comment in the sequel. We shall also be interested in the linear
case where the term u-+grad is replaced with ﬁfgrad for some known diver-
gent free velocity field U. In the latter case the restriction on the
Reynolds number is not needed.

To define the approximation procedure we let

(2.4) B = {v : gradv € L5(®), v = 0 on 20},
and

2.5) L3@ = {q : a e t’@, j;z q = 0}.

We select two finite dimensional subspaces

@6 VS H@, S, L@,

and seek a pair




€S

2.7) y_hevh, Py q°

such that

h h .. _h h
(2.8) js;{grad Eh-gradzl+(y_h'gradgh) v } - f p,, divv = Js;i-y_ s

o B 7
(2.9) B giv y, =0
. j' q iv ug s
2
h | > H | .
holds for all v  in Vh and q in SH. Once a basis has been chosen

for Uh and SH’ the above reduces to a set of nonlinear algebraic equations
[3].

As noted in the introduction this system will in general be unstable,
and only special choices for Vh and SH will lead to convergent approxi--
mations. The condition for stability was first formulated by Brezzi [1],
and it takes the following form (see also [2] for an alternate but in this
context equivalent formulation):

o (1)
(2.10) sl [ ay div v} 2 Blla ll,

Here the sup is taken over all gh in Vh with

¥ 1, < 1,

and qy 1is any element in SH' The number B should satisfy 0<B8<e
and should be independent of Oy In addition, it should be bounded away

from zero as the dimensien of the spaces Vh><sH approaches infinity.

(1)

In the sequel we shall use standard Sobolev space notation with

denoting the norm on H' () or ﬁr(ﬂ).

I:



3. A Class of Finite Element Spaces

We are now prepared to state and prove our main result. Here we

>
assume that Vh and SH are finite element spaces with h and H being

mesh spacings. It is assumed that these spaces have the standard approxi-

mation properties; i.e.,

(3.1) inf[u-v"l, < ¢pHlu

I, I, s

A

h
|

(3.2) inf” P-&8 llg = CAHQHP ”Q ’

for suitable integrals 1<k <K, 1<2<L, and for a positive constant C
independent of h, H, u and p.

For spaces SH of piecewise polynomial functions we have

(3.3) Sy S B @,

for some €>0. For example, if SH consists of discontinuous piecewise
polynomial functions (such as piecewise constants), then € can be any
number in the range 0<e < 3. In addition, if the grid for SH is quasi-

regular, then an inverse property is valid. More precisely, there is a

number O<CI<oo independent of H such that

-€
(3.4) lag e < et llag Il

holds for all Ay in SH.

Theorem 1. Let (3.7) - (3.4) hold. Then there 45 a constant C Ande-

pendent 04 H, h, u, and p such that i§

(3.5) Ch/H < 1,

then the Brezzi condition (2.10) 48 valid.




Remank. In short this result states that the approximation will be

stable provided the mesh spacing h for the velocities is sufficiently

fine compared to the mesh spacing H for the pressure. The condition

(3.5) is familiar from other results on mixed and hybrid finite element

methods [4].

The starting point in the proof of Theorem 1 is a result due to Leray
which in effort states that the Brezzi condition (2.10) is valid in the
infinite dimensional case where Vh is replaced with Hé(Q) and SH is
replaced by Lg(ﬂ). It is normally stated in the context of the ability to
stably decompose a vector field into a divergence free part plﬁs a curl

free part. Here we give an equivalent form the proof of which can be found

in [7].

Theorem 2: Leray. let f€ L(z)(Q). Then there is a v € H2(Q) such
that

{3.6) divv =f in Q ,

(3.7) v =0 on 30,

with

(3.8) lvll, < c Il £lly »

where 0 < C, < (8 a constant independent of £ and v.

Strictly speaking, the result is valid only for smooth regions
that for example are free of re-entrant corners such as convex regions or
(e o]
regions with C boundaries. In such cases, the smoothness of v increases

with the smoothness of f. 1In particular, we have the following



F1+6

Conollany. Let f € HG(Q) N Lg_(ﬂ). Then there is a v € H  (R)

satisfying (3.5) - (3.6) and

(3.9) lvllips < cllolls

for 0 < § < 1.

We are now prepared to prove Theorem 1. To do this we must show

there is a number B such that for any qH in SH we have
(3.10) fQ{qH divv,} > Bl qlly ;>

>
for a suitable v, in Vh. Let v satisfy

(3.11) div v = gy in Q,
(3.12) v =0 on T,
with

(3.1 vl < collagll, -

where CL is the constant in Theorem 2. Using the approximation property

(3.1) we select v, in _ljh satisfying
€
(3.14) lv-vll; < chllwll

€
e S Ca0h llag Il -

Using the inverse property (3.4) this becomes

(3.15) lv-v I} = cem/mSliay Il
where
(3.16) Cx = CpC Cr-




Since div v = 9y we also have
(3.17) lag g < llwliy-
Hence (3.15) implies

€
(3.18) lv-vpll; < commlivil, .

We now put these inequalities together to establish (3.10). Indeed,

first note that

, 2 -1
flogae s = llg e > eyl el -

Thus, using (3.18) we have

f{qH divxh} = {quiv_\_r_} - {qH div (X'Xh)}
93
> (€t - c /m®) flag Il v 1l -
But
Hvally = llxlly < ly-wll; < co@m®ivi,.
Thus

) -1, -1
-';qu divy, > (L+C (/M%) (C] - (/M) ||qy I vy, 114

Thus, (3.10) holds with
-1,.-1
B = (L+C (/M) T(C " - C, (/D).

It follows that B is bounded above from zero as h, H > 0 provided h/H

is sufficiently small. 1In particular, the constant C in Theorem 1 is

e = (c%c,c)tE.

1
¢ = (C*CL) L°A"I



4, The Poisson Equation

We now consider the Poisson equation which we write in first order form

as follows:

(4.1) u -grad ¢ =0 in Q ,
(4.2) divu=f£f in Q ,
(4.3) o =g on JI .
The weak form of this system is to seek
. 2 . 2
(4.4) u € H(div,) = {X € L°(R) : divv € L w1},
2
(4.5) b€ L (),
such that
(4.6) uev + ¢ divv = [ gvev,
oot d] Jpewe
(4.7) ¢ divu = p£f,
j; j;

holds for all v € H(Q:div) and VY € LZ(Q). In (4.6) Vv denotes the outer
normal to §i.
As with the Navier-Stokes equations are approximate procedure is obtained

by first introducing finite dimensional subspaces
e 2
V,, € H(Q,div), SyS L.

One then seeks

+

€V, ¢y€S

:LC




such that (4.6) - (4.7) holds with u replaced with u and ¢ replaced
with ¢H. In addition, v and ¢ are restricted to Uh and Sh’
respectively.

The stability and convergence of this scheme centers on a condition

similar to (2.10) which was formulated in [5]. In particular, there must

be an absolute number 0 < B < @ for which

(4-8) SUp(Xh,qH)_l Z. B”qH “_1 ¢

Here (',°)_1, ll.ll—l denote the inner product and norm on H_l(Q), and

>
the sup is taken over all XP in Vh with

A

(4.9) ”Y_h “0 1.

We now show that the analog of Theorem 1 is valid.

Theorem 3. Let the assumptions in Theorem 1 hokd. Then (4.8) is valid.
The following is a special case of Theorem 2 and its Corollary.

Lemma.  Let f € HO(@). Then there is a v €HN(Q) such that

(4.58) divv = f in Q.

Moreoven,

”X ”1.,.5 b C”f”5 ’

To prove (4.8) we let

divv = q
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Then
2
(5.9) @ivy, ap_y = llag 12, > @/ollay l_y lIv Il -
—)-
We now select a Vi € Vh such that

€ €

”X-Y_hllo < Ch “XHE < Ch ”qH ”_1+€ .

Using the inverse inequality
-€
lag ll_ppe < Bl Il -
We obtain
€

(4.10) lv-v, llg = c/mllagll_-
Thus (as in section 3) we obtain

(4.11) @ivy,, a)_; > € -¢,m/m% Loyl v lly

for absolute positive constants C1 and C2.
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